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1 Linear Space and Gateaux Variations

1.1 Real Linear Spaces

Example 1.1. The collection of real valued functions on a nonempty set S
is a real linear space.

Example 1.2. the collection of all d-dimensional real vector valued functions
on this set S.

Example 1.3. If continuity is definable on S, then C(S) (= C0(S)), the set
of continuous real valued functions on S, will be a real linear space.

Example 1.4. For each open subset D of Euclidean space and each m =
1, 2, ..., Cm(D), the set of functions on D having continuous partial deriva-
tives of order ≤ m, is a real linear space.

Example 1.5. If D is bounded with boundary ∂D, and D = D
⋃
∂D, then

Cm(D), the subset of Cm(D)
⋃

C(D) consisting of those functions whose
partial derivatives of order ≤ m each admit continuous extension to D, is a
real linear space.

Example 1.6. D := {y ∈ C[a, b] : y(a) = 0 & y(b) = 1} is not a linear
space.

1.2 Functions from Linear Spaces

Example 1.7. When f ∈ C([a, b]× R2), then

F (y) :=

∫ b

a

f(x, y(x), y′(x))dx

is defined on Y := C1[a, b], since for each y ∈ Y , the composite function

f [y(x)] = f(x, y(x), y′(x)) ∈ C[a, b].

However, if f ∈ C([a, b]×D) where D is a domain in R2, then F is defined
only on a subset of

D⋆ := {y ∈ C1[a, b] : (y(x), y′(x)) ∈ D, ∀x ∈ [a, b]}.
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1.3 Fundamentals of Optimization

Lemma 1.8 (Optimality Condition). y0 ∈ D minimizes J on D if and only
if

J(y0 + v)− J(y0) ≥ 0, ∀y0 + v ∈ D,

with equility holds if and only if v = 0.

Proposition 1.9. y0 minimizes J on D (uniquely) if and only if for constants
c0 and c ̸= 0, y0 minimizes c2J + c0 on D (uniquely).

1.3.1 Constrained Case

Proposition 1.10. If functions J and G1, G2, ..., GN are defined on D, and
for some constants λ1, λ2, ..., λN , y0 minimizes J̃ := J+λ1G1+ ...+λNGN on
D (uniquely), then y0 minimizes J on D (uniquely) when further restricted
on the set Gy0 := {y ∈ D : Gj(y) = Gj(y0), j = 1, 2, ..., N}.

Corollary 1.11. y0 of Proposition 1.10 minimizes J on D (uniquely) when
restricted to the set

G⋆
y0

:= {y ∈ D : λjGj(y) ≤ λjGj(y0), j = 1, 2, ..., N}.

Remark 1.12. These results illustrate an important principle: The solution
to one minimization problem may also provide a solution for other problems.

Proposition 1.13. Suppose f := f(x, y, z) and g := g(x, y, z) are continuous
on [a, b] × R2 and there is a function λ ∈ C[a, b], for which y0 minimizes

F̃ (y) :=
∫ b

a
f̃ [y(x)]dx on D ⊂ C1[a, b] (uniquely) where f̃ := f + λg. Then

y0 minimizes F (y) :=
∫ b

a
f [y(x)]dx on D (uniquely) under the inequality

constraint
λ(x)g[y(x)] ≤ λ(x)g[y0(x)], ∀x ∈ [a, b]. (1)

1.4 The Gateaux Variations

A decisive role in the optimization of a real valued function on a subset of
Rn is played by its partial derivatives-or more generally by its directional
derivatives-if they exist. When J is a real valued function on a subset of a
linear space all, then it is not evident how to define its partial derivatives
(unless all can be assigned a distinguished coordinate system). However,
a definition for its directional derivatives is furnished by a straightforward
generalization of that in Rn:
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Definition 1.14 (Gateaux Variation). For y, v ∈ Y :

δJ(y; v) := lim
ϵ→0

J(y + ϵv)− J(y)

ϵ
=

∂

∂ϵ
J(y + ϵv)

∣∣∣
ϵ=0

, (2)

assuming that this limit exists, is called the Gateaux variation of J at y in
the direction v.

Example 1.15. If J = f ∈ C1[a, b] and Y, V ∈ Y := Rn. Then,

δf(Y ;V ) = lim
ϵ→0

f(Y + ϵV )− f(Y )

ϵ
, (3)

is just the directional derivative of f when V is a unit vector. Thus we have
that

δf(Y ;V ) = ∇f(Y ) · V,

and this holds for all V ∈ Y .
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2 Minimization of Convex Functions

2.1 Convex Functions

Definition 2.1 (Convexity). A real valued function J defined on a set D in
a linear space Y is said to be (strictly) convex on D provided that when y
and y + v ∈ D then δJ(y; v) is defined and J(y + v)− J(y) ≥ δf(y; v) (with
equility holds if and only if v = 0).

Proposition 2.2. If J1 and J2 are convex functions on D then for each c ∈ R,
c2J1 and J1 + J2 are also convex. Moreover, the latter is strictly convex if J1
is strictly convex.

Proposition 2.3 (Unconstrained Optimality Condition). If J is (strictly)
convex on D then each y0 ∈ D for which δf(y0; v) = 0,∀y0+v ∈ D minimizes
J on D.

2.2 Convex Integral Functions

If f = f(x, y, z) and its partial derivatives fy, fz are defined and continuous
on [a, b]× R2, we know that the integral function

F (y) =

∫ b

a

f(x, y(x), y′(x))dx =

∫ b

a

f [y(x)]dx,

has ∀y, v ∈ C1[a, b], the variation

δF (y; v) :=

∫ b

a

(fy[y(x)]v(x) + fz[y(x)]v
′(x)) dx. (4)

Convexity of F requires that ∀y, y + v ∈ C1[a, b]

F (y + v)− F (y) ≥ δF (y; δ).

This would follow from the corresponding pointwise inequality between the
integrands in the last expression; i.e. if for each x ∈ (a, b):

f [y(x) + v(x)]− f [y(x)] ≥ fy[y(x)]v(x) + fz[y(x)]v
′(x), (5)

or

f(x, y + v, z + w)− f(x, y, z) ≥ fy(x, y, z)v + fz(x, y, z)w,

∀(x, y, z), (x, y + v, z + w) ∈ (a, b)× R2.
(6)
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The above inequality simply states that f = f(x, y, z) is convex when x is
held fixed. This restricted or partial convexity essential to our development is
expressed and extended in the following which uses for illustration a function
defined on a subset of R3.

Definition 2.4 (Strong Convexity). f(x, y, z) is said to be (strongly) convex
on S ⊂ R3 if f = f(x, y, z) and its partial derivatives fy and fz are defined
and continuous on this set and there they satisfy the inequality:

f(x, y + v, z + w)− f(x, y, z) ≥ fy(x, y, z)v + fz(x, y, z)w,

∀(x, y, z), (x, y + v, z + w) ∈ S,

(with equaility holds at (x, y, z) if and only if v = 0 or w = 0).

Theorem 2.5 (Solution to Convex Program). Let D ⊂ R2 be a domain and
for any given a1, b1, set

D := {y ∈ C1[a, b] : y(a) = a1, y(b) = b1; (y(x), y
′(x)) ∈ D}.

If f(x, y, z) is (strongly) convex on [a, b]×D, then

F (y) :=

∫ b

a

f [y(x)]dx,

is (strictly) convex on D. Hence each y ∈ D for which

∂

∂x
fz[y(x)] = fy[y(x)] (7)

on [a, b], minimizes F on D (uniquely).

Proof. By (strong) convexity of f(x, y, z) one can show the (strict) convexity
of F (y). Note also that if ∂

∂x
fz[y(x)] = fy[y(x)], then

δF (y; v) = fz[y(x)]v(x)
∣∣∣b
a
= 0, ∀y, y + v ∈ D.

Thus by Proposition 1.10, y such that ∂
∂x
fz[y(x)] = fy[y(x)] minimizes F (y)

on D.
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Theorem 2.6. Let I be an interval and set

D := {y ∈ C1[a, b] : y(a) = a1, y(b) = b1; y
′(x) ∈ I}.

Then, if f(x, z) is (strongly) convex on [a, b] × I, each y ∈ D which makes

fz(x, y
′(x)) = const. on (a, b) minimizes F (y) :=

∫ b

a
f(x, y′(x))dx on D

(uniquely).

Proof. It directly follows from Theorem 2.5 and the fact that ∂
∂x
fz[y(x)] =

fy[y(x)] = 0 implies fz(x, y
′(x)) = const.

Corollary 2.7. If f = f(z) is (strictly) convex on I, then y0(x) =
b1−a1
b−a

(x−
a) + a1 minimizes F (y) :=

∫ b

a
f(y′(x))dx on D (uniquely).

Free End-point Problem When we examine the proof of Theorem 2.5
we see that the end-point specification was used only to conclude that the

constant v2(x) = 0 and that fz[y(x)]v(x)
∣∣∣b
a
= 0. Hence these end-point

conditions on y may be relaxed, if suitable compensation is made in fz[y(x)].

Proposition 2.8. Let D be a domain in R2 and suppose that f(x, y, z) is
(strongly) convex on [a, b]×D. Then each solution y0 ∈ D := {y ∈ C1[a, b] :
(y(x), y′(x)) ∈ D} of the differential equation ∂

∂x
fz[y(x)] = fy[y(x)] minimizes

F (y) :=
∫ b

a
f [y(x)]dx

1. on Db := {y ∈ D : y(a) = y0(a)}, if fz[y0(b)] = 0 (uniquely).

2. on D, if fz[y0(a)] = fz[y0(b)] = 0, (uniquely within an additive con-
stant).

2.3 (Strongly) Convex Functions

In order to apply the results of the previous section, we require a supply
of functions which are (strongly) convex. In this section techniques for rec-
ognizing such convexity will be developed. We begin with the simpler case
f = f(x, z).

Proposition 2.9. If f = f(x, z) and fzz are continuous on [a, b]× I and for
each x ∈ [a, b], fzz(x, z) > 0 (except possibly for a finite set of z values), then
f(x, z) is strongly convex on [a, b]× I.
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Lemma 2.10. 1. The sum of a (strongly) convex function and one (or
more) convex functions is again (strongly) convex.

2. The product of a (strongly) convex function f(x, y, z) by a continuous
function (p(x) > O)p(x) ≥ 0 is again (strongly) convex on the same
set.

3. f(x, y, z) = α(x) + β(x)y + γ(x)z is (only) convex for any continuous
functions α, β, and γ.

4. Each (strongly) convex function f(x, z) (or f(x, y) is also (strongly)
convex when considered as a function f(x, y, z) on an appropriate set.

2.4 Minimization with Convex Constraints

Convexity may also be of advantage in establishing the minima of functions
J that are constrained to the level sets of other functions G.

Theorem 2.11. If D is a domain in R2, such that for some constants λj, j =
1, 2, ..., N , f(x, y, z) and λjgj(x, y, z) are convex on [a, b] × D (and at least
one of these functions are strongly convex on this set), let

f̃ := f +
N∑
j=1

λjgj.

Then the solution y0 of the differential equation

∂

∂x
f̃z[y(x)] = f̃y[y(x)]

on (a, b), minimizes

F (y) :=

∫ b

a

f [y(x)]dx

(uniquely) on

D := {y ∈ C1[a, b] : y(a) = y0(a), y(b) = y0(b); (y(x), y
′(x)) ∈ D}

under the constraning relations

Gj(y) :=

∫ b

a

gj[y(x)]dx = Gj(y0), j = 1, 2, ..., N.
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Proof. By construction f̃(x, y, z) is (strongly) convex on [a, b] × D, so that
by Theorem 2.5, y0 minimizes

F̃ (y) =

∫ b

a

f̃ [y(x)]dx = F (y) +
N∑
j=1

Gj(y)

(uniquely) on D.
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3 The Lemmas of Lagrange and du Bois-Reymond

Lemma 3.1 (du Bois-Reymond). If h ∈ C[a, b] and
∫ b

a
h(x)v′(x)dx = 0,∀v ∈

D0 := {v ∈ C1[a, b] : v(a) = v(b) = 0}, then h = const. on [a, b].

Proof. Define v(x) :=
∫ x

a
(h(t) − c)dx, where c = 1

b−a

∫ b

a
h(t)dt. We know

that v ∈ C1[a, b], v′(x) = h(x)− c on (a, b), and v(a) = v(b) = 0. Therefore,

v′ ∈ D0. From the hypothesis we have 0 ≤
∫ b

a
(h(t)−c)2dt =

∫ b

a
h(x)v′(x)dx−

cv(x)
∣∣b
a
= 0. Therefore, h ≡ c.

Proposition 3.2 (Generalized du Bois-Reymond). If h ∈ C[a, b] and for
some m = 1, 2, ... ∫ b

a

h(x)v(m)(x)dx = 0, ∀v ∈ D0,

where

D0 := {v ∈ Cm[a, b] : v(k)(a) = vk(b) = 0, k = 1, 2, ...,m− 1},

then on [a, b], h is a polynomial with degree < m.

Proposition 3.3. If g, h ∈ C[a, b] and
∫ b

a
[g(x)v(x) + h(x)v′(x)]dx = 0,∀v ∈

D0 := {v ∈ C1[a, b] : v(a) = v(b) = 0}, then h ∈ C1[a, b] and h′ = g.

Proof. Define G(x) :=
∫ x

a
g(t)dt for x ∈ [a, b]. Then G ∈ C1[a, b] and G′ = g.

Integration by parts yields:

0 =

∫ b

a

[g(x)v(x) + h(x)v′(x)]dx =

∫ b

a

[h(x)−G(x)]v′(x)dx+G(x)v(x)
∣∣∣b
a
,

for all v ∈ D0. Therefore, by Lemma 3.1, h(x) = G(x) + const. and thus
h ∈ C1[a, b] and h′ = g.

Corollary 3.4. If g ∈ C[a, b] and
∫ b

a
g(x)v(x)dx = 0,∀v ∈ D0 := {v ∈

C1[a, b] : v(a) = v(b) = 0}, then g ≡ 0 on [a, b].

Lemma 3.5 (Lagrange). if g ∈ C[a, b] and for some m = 0, 1, 2, ...,∫ b

a

g(x)v(x)dx = 0,

for all v ∈ D0 := {v ∈ Cm[a, b] : v(k)(a) = v(k)(b) = 0, k = 0, 1, ...,m− 1},
then g ≡ 0 on [a, b].
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Proposition 3.6. If d = 2, 3, ... and for G,H ∈ (C[a, b])d, we have∫ b

a

[G(x)V (x) +H(x)V ′(x)]dx = 0,

∀v ∈ D0 := {V ∈ (C1[a, b])d : V (a) = V (b) = 0},

then H ∈ (C1[a, b])d and H ′ = G.

Corollary 3.7. When H ∈ (C[a, b])d and
∫ b

a
H(x)V ′(x)dx = 0,∀v ∈ D0,

then H(x) = const. ∈ Rd.
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4 Local Extrema in Normed Linear Space

In Rn, it is possible to give conditions which are necessary in order that a
function f have a local extremal value on a subset D, expressed in terms of
the vanishing of its gradient ∇f . In this chapter, we shall obtain analogous
variational conditions which are necessary to characterize local extremal val-
ues of a function J on a subset D of a linear space Y supplied with a norm
which assigns a ”length” to each y ∈ Y .

4.1 Norms for Linear Spaces

[1]: Section 5.1

4.2 Normed Linear Spaces: Convergence and Com-
pactness

[1]: Section 5.2

4.3 Continuity

[1]: Section 5.3

Lemma 4.1 (Uniform Continuity). If K is a compact set in a normed linear
space (Y , ∥·∥), then a continuous function F : K → R is uniformly continuous
on K; i.e. given ϵ > 0, ∃δ > 0 such that y, ỹ ∈ K and ∥y − ỹ∥ < δ ⇒
|F (y)− F (ỹ)| < ϵ.

Example 4.2. When f ∈ C([a, b]× R2), the function

F (y) :=

∫ b

a

f [y(x)]dx =

∫ b

a

f(x, y(x), y′(x))dx

is defined ∀y ∈ Y := C1[a, b] and is continuous with respect to the maximum
norm.

Proposition 4.3. A continuous real-valued function J on a compact subset
K of a normed linear space (Y , ∥ · ∥) assumes both maximum and minimum
values at points in K, In particular, these values are finite.
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4.4 (Local) Extremal Points

[1]: Section 5.4

4.5 Necessary Conditions: Admissible Directions

In minimizing a real valued function J over D ⊂ Y , where (Y , ∥ · ∥) is a
normed linear space, it is natural to consider for each y ∈ D those directions
v ∈ Y in which the restricted function J |D admits variation at y; i.e., we
wish to distinguish those directions v for which:

(1) y + ϵv ∈ D for any ϵ sufficiently small; and
(2) δJ(y; v) exists.
Such directions will be termed admissible at y for D, or D-admissible at y

(for J). Observe that if v is D-admissible at y, then so is each scalar multiple
cv for c ∈ R; 0 is always admissible.

Proposition 4.4 (First-Order Necessary Condition). ] In a normed linear
space (Y , ∥ · ∥), if y0 ∈ D ⊂ Y is a (local) extremal point for a real-valued
function J in D, then δJ(y0; v) = 0 for all D-admissible directions at y0.

Our hope is that there will be ”enough” admissible directions so that the
condition δJ(y0; v) = 0 can determine y0. Observe, though, that with this
condition alone we cannot distinguish between a local maximum and a local
minimum point-or between a local minimum point and a global minimum
point. Moreover, as in Rd, we must admit the possibility of stationary points
(such as saddle points) which satisfy this condition but may be neither local
maximum points nor local minimum points.

4.6 The Frechet Derivative

As we have seen, the Gateaux variation in a normed linear space is analogous
to the directional derivative in Rn. In particular, without further information,
we cannot expect to use these variations to provide a good approximation
to a function which has them-except, of course. in each separate direction.
For this purpose in Rn, we required that the function satisfy the stronger re-
quirement of differentiability, and we shall simply lift the definition employed
there, together with the associated terminology, to our normed linear space
(Y , ∥ · ∥). In Rn with the Euclidean norm | · |, a real valued function f is said
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to be differentiable at y0 ∈ Rn provided that it is defined in a sphere S(y0)
and there

f(y) = f(y0) + l(y − y0) + |y − y0|ϵ(y − y0),

where ϵ(y − y0) is a function with zero limit as y − y0 → 0, and l is the
continuous linear function defined on Rn by l(v) := ∇f(y0) · v.

Definition 4.5 ((Frechet) Differentiablity). In a normed linear space (Y , ∥ ·
∥), a real-valued function J is said to be (Frechet) differentiable at y0 ∈ Y if
J is defined in a sphere S(y0) and there exists a continuous linear function
L : Y → R such that

J(y) = J(y0) + L(y − y0) + ∥y − y0∥ϵ(y − y0), (8)

where ϵ(y − y0) is a real-valued function which has zero limit as y − y0 → 0.

Proposition 4.6. If J is (Frechet) differentiable at y0, then J has Gateaux
variation δJ(y0; v) = L(v) in each direction v ∈ Y .

It follows that the linear function L of the definition is uniquely deter-
mined. It is denoted J ′(y0) and called the Frechet derivative of J at y0.

Proposition 4.7. In a normed linear space (Y , ∥·∥) if a real-valued function
J is differentiable at y0 ∈ Y , then it is continuous at y0.

As in Rn, the converses of these propositions need not hold. Continuous
functions are seldom differentiable. Moreover, if J admits the Gateaux vari-
ation δJ(y0; v) in each direction v ∈ Y , the resulting function of v may be
neither linear nor continuous-and even these properties may not suffice for
differentiability. Some additional conditions are required.

Theorem 4.8. In a normed linear space (Y , ∥ · ∥), if a real-valued function
J has at each y ∈ Sr(y0) Gateaux variation δJ(y; v),∀v ∈ Y and

(a) δJ(y0; v) is linear and continuous in v;
(b) |δJ(y; v)− δJ(y0; v)| → 0 as y → y0 uniformly for all u ∈ B := {u ∈

Y : ∥u∥ = 1}.

Conditions (a) and (b) also imply a weak continuity of δJ at y0 in the
sense of the following:

Definition 4.9 (Weak Continuity). In a normed linear space (Y , ∥ · ∥), the
Gateaux variations δJ(y; v) of a real-valued function J are said to be weakly
continuous at y0 ∈ Y if for all v ∈ Y , δJ(y; v) → δJ(y0; v) as y → y0.
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Proposition 4.10. When f = f(x, y, z), fy, and fz are all in C([a, b]× R2)

then F (y) :=
∫ b

a
f(x, y(x), y′(x))dx is differentiable and has weakly continu-

ous variations at each y0 ∈ Y := C1[a, b] in the maximum norm.

4.7 Constrained Optimization and Lagrangian Multi-
pliers

In this section we will develop the method of Lagrangian multipliers for
characterizing the local extrema of a function J in a normed linear space when
restricted to one or more level sets of other such functions. In this context,
the level sets involved are called constraints, and the equations defining the
sets are referred to as constraining relations.

To motivate the ensuing development, we consider first the problem of
characterizing a (local) extremal point y0 of a real valued function J in a
normed linear space (Y , ∥ · ∥) when constrained to a level set of a real valued
function G. If there is a pair of directions v, w for which there exist pairs of
scalars (r, s) and (r, s) as small as we please such that J(y) < J(y0) < J(y)
while G(y) = G(y0) = G(y), where y := y0 + rv + sw and y := y0 + rv + sw,
then y0 cannot be a local extremal point.

We shall now assume that both J and G are defined in a neighborhood
of y0, and consider for fixed directions v, w the auxiliary functions

ρ = J (r, s) := J(y0 + rv + sw), σ = G(r, s) := G(y0 + rv + sw),

which are defined in some two-dimensional neighborhood of the origin in R2.
The pair of these functions F := (J ,G) maps this neighborhood into R2

which contains the point (ρ0, σ0) = (J (0, 0),G(0, 0)) = (J(y0), G(y0)). If it
also contains a full neighborhood of (ρ0, σ0), then there are preimage points
(r, s) and (r, s) and associated y, y for which J(y) < J(y0) < J(y) while
G(y) = G(y0) = G(y).

Finally, to have (r, s), (r, s) as near (0, 0) as we please we would require
that each small neighborhood of (0, 0) map onto a set which contains a full
neighborhood of (ρ0, σ0). All of this is assured if the mapping F has an
inverse defined in a neighborhood of (ρ0, σ0) which is continuous at (ρ0, σ0).

The simplest conditions which provide this continuous local inverse are
well known, and form the content of the inverse function theorem which we
state without proof.
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Theorem 4.11 (Inverse Function Theorem). For X0 ⊂ Rd and τ > 0, if a
vector-valued function F : Sτ (X0) → Rd has continuous first-order deriva-
tives in each component with nonvanishing Jacobian determinant at X0, then
F provides a continuously invertible mapping between a neighborhood of X0

and a region containing a full neighborhood of F (X0).

Proposition 4.12. In a normed linear space (Y , ∥ · ∥), if real-valued func-
tions J and G are defined in a neighborhood of y0 and have there in any pair
of (fixed) directions v, w, Gateaux variations are continuous in this neighbor-
hood and satisfy the Jacobian condition∣∣∣∣δJ(y0; v) δJ(y0;w)

δG(y0; v) δG(y0;w)

∣∣∣∣ ̸= 0, (9)

Then J cannot have a local extremal point at y0 when constrained Gy0 :=
{y ∈ Y : G(y) = G(y0)}.

Proposition 4.13 (Lagrange First-order Necessary Condition). In a normed
linear space (Y , ∥ · ∥), if real-valued functions J and G are defined in a
neighborhood of y0, a local extremal point for J constrained to Gy0 , and
have there weakly continuous Gateaux variations, then either

(a) δG(y0;w) = 0,∀w ∈ Y ; or
(b) There exists λ ∈ R such that δ(J + λG)(y0; v) = 0,∀v ∈ Y .

Proposition 4.14 (Lagrange First-order Necessary Condition). In a normed
linear space (Y , ∥ · ∥), if real-valued functions J,G1, G2, ..., GN are defined
in a neighborhood of y0, have y0 ∈ Y as one local extremal point for J
constrained to Gy0 := {y ∈ Y : Gj(y) = Gj(y0), j = 1, 2, ..., N}, and have
weak continuous Gateaux variations, then either

(a)

∣∣∣∣∣∣∣∣∣
δG1(y0; v1) δG1(y0; v2) · · · δG1(y0; vN)
δG2(y0; v1) δG2(y0; v2) · · · δG2(y0; vN)

...
...

...
...

δG1(y0; v1) δG1(y0; v2) · · · δG1(y0; vN)

∣∣∣∣∣∣∣∣∣ ̸= 0,∀vj ∈ Y , j = 1, 2, ..., N ; or

(b) there exist λj ∈ R, j = 1, 2, ..., N such that δ(f +
∑N

j=1 λjGj)(y0; v) =
0,∀v ∈ Y .
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5 The Euler-Lagrange Equations

A point y0 is a (local) minimizing function for F on D if, from Proposition
4.4,

δF (y0; v) = 0, ∀D-admissible directions of F at y0.

When f is sufficiently differentiable, there are enough such directions to
infer that on (a, b), y0 is a solution of the first and second equations of Euler-
Lagrange.

In this chapter, only those conditions necessary for a local extremum are
considered. It should be noted, however, that the initial investigators in these
fields, often regarded a function which satisfied the necessary conditions as
the extremal function sought, and the practice continues today in elementary
treatments of the subject. Throughout this chapter, we shall supply the space
C1[a, b] with the maximum norm ∥y∥M := maxx(|y(x)|+ |y′(x)|).

5.1 The First Equation: Stationary Functions

For simplicity, suppose initially that the function f = f(x, y, z), together
with its derivatives fy and fz, is continuous on [a, b] × R2. Then for each
y ∈ Y := C1[a, b]:

F (y) :=

∫ b

a

f(x, y(x), y′(x))dx =

∫ b

a

f [y(x)]dx

is defined. F has in each direction v the Gateaux variation

δF (y; v) =

∫ b

a

[fy(x)v(x) + fy′(x)v
′(x)] dx, (10)

where we use the compressed notation fy(x) := fy[y(x)] and fy′(x) :=
fz[y(x)].

Proposition 5.1. If y ∈ Y makes δF (y; v) = 0,∀v ∈ D0 := {v ∈ Y : v(a) =
v(b) = 0}, then fy′ ∈ C1, and

d

dx
fy′(x) = fy(x), x ∈ (a, b), (11)

so that

δF (y; v) = fy′(x)v(x)
∣∣∣b
a
,∀v ∈ Y . (12)
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Proof. The first assertion is a direct consequence of Proposition 3.3 with
g(x) := fy(x) and h(x) := fy′(x). The second assertion follows by noticing
that the integrand is merely (d/dx) [fy′(x)v(x)].

Equation (11) is the first differential equation of Euler and Lagrange.

Definition 5.2 (Stationary Function). Each C1 function y which satisfies
the differential equation (11) on some interval will be called a stationary
function for f (of x, y, and y′).

Observe that we do not require that a stationary function satisfy any
particular boundary conditions, although in each problem, we might be in-
terested only in those which meet given boundary conditions. Note that
certain functions f with their derivatives fy and fz are defined only for a
restricted class of functions y, so that variation of F at y can be performed
only for a reduced class of v. As the preceding discussion shows, when y is
stationary and meets the restrictions, then δF (y; v) = 0,∀v ∈ D0 for which
the variation at y is defined. However, there may also be nonstationary func-
tions η which make δF (η; v) = 0 for the reduced class of v, and these may
provide the true extremals.

5.2 Special Cases of the First Equation

Although every C1 function y is stationary for f(x, y, z) = z or yz, in general,
it is difficult to find any solutions for the first equation. However, when one
or more of the variables off is not present explicitly, then we can at least
obtain a first integral of the differential equation. We shall analyze three
such cases in this section.

Case I: f = f(z). The first equation becomes (d/dx)fy′(x) = 0 since
fy(x) ≡ 0. Therefore, fz(y

′(x)) = const. and the stationary functions y
have derivatives y′ which lie in the level sets of fz. In particular, the linear
functions, for which y′ = const., must be stationary.

Case II: f = f(x, z). Again we have fy(x, z) = 0 so that the stationary
condition is fz(x, y

′(x)) = const.
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Case III: f = f(y, z). When y ∈ C2, we have

d

dx
f(y(x), y′(x)) = fy(x)y

′(x) + fz(x)y
′′(x).

Upon substitution and cancellation we obtain

d

dx
[f(y(x), y′(x))− y′(x)fy′(x)]

=
d

dx
f(y(x), y′(x))− y′′(x)fy′(x)− y′(x)

d

dx
fy′(x)

= −y′(x)

[
d

dx
fy′(x)− fy(x)

]
.

(13)

When y is stationary, the right hand side vanishes. Thus on each interval of
stationarity of y we have

f(x)− y′(x)fy′(x) = const. (14)

Conversely, if Equation (14) holds on an interval in which y′ does not vanish,
then y is stationary. In this case stationarity is characterized by (14) which
is a first integral of the first equation (11).

5.3 The Second Equation

When f = f(x, y, z) is C1 and y is a C1 solution of the first equation (11) on
[a, b], then integration gives

fy′(x) =

∫ x

a

fy(t)dt+ const. (15)

When y ∈ C2, then

d

dx
f(x, y(x), y′(x)) =

d

dx
f(x) + fy(x)y

′(x) + fy′(x)y
′′(x)

= fx(x) +
d

dx
(y′(x)fy′(x)) .

Thus, (d/dx)[f(x)− y′(x)fy′(x)] = 0, or

f(x)− y′(x)fy′(x) =

∫ x

a

fx(t)dt+ c0, c0 ∈ R.
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This equation resembles (14), the integral form of the first, and, moreover,
it does not exhibit explicitly the C2 requirement on y used in its derivation.
Hence we can hope to obtain it directly. This is indeed possible (for extremal
functions) but it is surprisingly complicated to do so.

Let F (y) :=
∫ b

a
f [y(x)]dx and D := {y ∈ C1[a, b] : y(a) = a1, y(b) = b1}.

Proposition 5.3. If f ∈ C1([a, b] × R2) and y0 ∈ D is a local extremal
function for F on D, then on [a, b], y0 satisfies the second Euler-Lagrange
equation

f(x)− y′(x)fy′(x) =

∫ x

a

fx(t)dt+ c0, (16)

for some constant c0.

Observe that when f = f(y, z), a local extremal function y ∈ D, must
also satisfy the equation (d/dx)[f(x) − y′(x)fy′(x)] = 0 without additional
smoothness assumptions.

Lemma 5.4. When y is only stationary, this proof does not yield the second
equation unless y is C2. However, if fz ∈ C1 then y ∈ C2 when fzz is
non-vanishing.

5.4 Integral Constraints: Lagrange Multipliers

Consider the optimization problem

min
y

F (y) :=

∫ b

a

f(x, y(x), y′(x))dx, (17a)

s.t. Gi(y) :=

∫ b

a

gi(x, y(x), y
′(x))dx = ci, ci ∈ R, i = 1, 2, ..., N, (17b)

y ∈ D := {y ∈ C1[a, b] : y(a) = a1, y(b) = b1}. (17c)

We can employ the method of Lagrangian multipliers (cf. Proposition 4.14)
since, in general, the linearity and weak continuity of the variations δF and
δG is assured by Proposition 4.10.

Theorem 5.5. Suppose that f = f(x, y, z) and gi = gi(x, y, z), i = 1, 2, ..., N ,
together with their y and z partial derivatives, are continuous on [a, b]×R2.
Let y0 be a local extremal function for the optimization problem (17), then
either
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(a). The determinant
∣∣δGi(y0; vj)

∣∣
i,j=1,2,...,N

= 0, whenever vj ∈ D0 :=

{v ∈ C1[a, b] : v(a) = v(b) = 0}, j = 1, 2, ..., N ; or
(b). ∃λi ∈ R, i = 1, 2, ..., N that makes y0 stationary for the modified

function f̃ := f + λigi. Namely, y0 solves

d

dx
f̃y′(x) = f̃y(x) on (a, b).

Proof. The proof directly follows from Proposition 4.14 and Proposition 5.1.

5.5 Vector-valued Functions
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6 Sufficient Conditions

As we have noted repeatedly, the equations of Euler-Lagrange are necessary
but not sufficient to characterize a minimum value for the integral function

F (Y ) :=

∫ b

a

f(x, Y (x), Y ′(x))dx =

∫ b

a

f [Y (x)]dx

on a set such as

D := {Y ∈ (C1[a, b])d : Y (a) = A, Y (b) = B},

since they are only conditions for the stationarity of F . However, in the
presence of (strong) convexity of f(x, Y, Z) these conditions do characterize
(unique) minimization.

6.1 The Weierstrass Method
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