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The Problem I

P (ϵ):

min
x

f(x, ϵ), (1a)

s.t. x ∈ R(ϵ), (1b)

where ϵ ∈ T ⊂ Rr, R : ϵ 7→ 2R
n

.
P1(ϵ):

min
x

f(x, ϵ), (2a)

s.t. x ∈ R(ϵ) := {x ∈M : g(x, ϵ) ≤ 0, h(x, ϵ) = 0}, (2b)

where M ⊂ Rn, g : Rn × T → Rp, and h : Rn × T → Eq.
P0(ϵ):

min
x

f(x, ϵ), (3a)

s.t. x ∈M, (3b)
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Preliminaries

Definition (Locally Lipschitz)

A function ϕ : Rr → Rl is said to be locally Lipschitz near z̄ ∈ Rr if there is a
neighborhood N(z̄) of z̄ and a L > 0 such that

∥ϕ(z1)− ϕ(z2)∥ ≤ L∥z1 − z2∥, ∀z1, z2 ∈ N(z̄). (4)

Definition (Directional Derivative)

The directional derivative of ϕ at the point z̄ in the direction v ∈ Rr is defined as

Dϕ(z̄; v) := lim
β→0+

1

β
[ϕ(z̄ + βv)− ϕ(z̄)] . (5)

If the above limit exists for every v ∈ Rr, we say ϕ is directionally differentiable at
z̄. Directionally differentiability does not imply differentiability.
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Continuity I

In this section we will consider conditions under which the optimal-value function
f⋆ and the optimal solution map S are continuous. We begin with definitions of
continuity of a point-to-set map. Let T be a metric space, ψ : T → 2R

n

, and
ϵ̄ ∈ T .

Definition (Semi-continuity)

A point-to-set function ψ is said to be upper (lower) semi-continuous at ϵ̄ if for
each open set O ⊂ Rn satisfying ψ(ϵ̄) ∈ O (ψ(ϵ̄) ∩O ̸= ∅), there exists a
neighborhood N(ϵ̄) such that ψ(ϵ) ⊂ O (ψ(ϵ) ∩O ̸= ∅), for all ϵ ∈ N(ϵ̄).

Definition (Closedness)

A point-to-set function ψ is said to be closed at ϵ̄ if ϵn ∈ T, ϵn → ϵ̄, xn ∈ ψ(ϵn),
and xn → x̄ imply x̄ ∈ ψ(ϵ̄).
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Continuity II

Definition (Openness)

A point-to-set function ψ is said to be open at ϵ̄ if ϵn ∈ T, ϵn → ϵ̄, and x̄ ∈ ψ(ϵ̄)
imply that ∃m and {xn} such that xn ∈ ψ(ϵn) for all n ≥ m and xn → x̄.

Definition (Uniform Compactness)

A point-to-set function ψ is said to be uniformly compact near ϵ̄ if the set
∪ϵ∈N(ϵ̄)ψ(ϵ) is bounded for some neighborhood N(ϵ̄).

Definition

Let {An} be a sequence of subsets of Rn. The inner limit of {An} is defined as

limn→∞An := {x ∈ Rn : ∃m, {xn} such that xn ∈ An,∀n ≥ m,xn → x}. (6)

Hogan showed that (a) lower semicontinuity and openness at a point are
equivalent, and (b) if ψ is uniformly compact near ϵ̄, then ψ is closed if and only if
ψ(ϵ̄) is compact and ψ is upper semicontinuous at ϵ̄.
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Continuity III

Lemma

ψ is closed (open) at ϵ̄ if and only if limn→∞ψ(ϵn) ⊂ (⊃)ψ(ϵ̄), for any {ϵn} ⊂ T
such that ϵn → ϵ̄.

Definition (Continuity)

ψ is continuous at ϵ̄ if it is upper semicontinuous and lower semicontinuous at ϵ̄.

Theorem (Theorem 2.1 in [FI90])

For P (ϵ), we have
(a). If R is lower semicontinuous at ϵ̄, and f is usc on R(ϵ̄)× {ϵ̄}, then f⋆ is usc
at ϵ̄.
(b). If R is upper semicontinuous at ϵ̄, R(ϵ̄) is compact, and f is lsc on
R(ϵ̄)× {ϵ̄}, then f⋆ is lsc at ϵ̄.
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Continuity IV

Theorem (Theorem 2.2 in [FI90])

For P (ϵ), if
(1). f is continuous on R(ϵ̄)× {ϵ̄};
(2). R is closed and open (i.e. lower semi-continuous) at ϵ̄;
(3). S(ϵ̄) is nonempty and a singleton;
(4). S is uniformly compact near ϵ̄;
then S is closed and open (under (4), S is continuous) at ϵ̄.

Note that (1) openness is equivalent to lower semi-continuity, and (2) uniform
compactness + closedness imply upper semi-continuity. Therefore, S is
continuous.
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Continuity V

Theorem (Theorem 2.3 in [FI90])

For P (ϵ), if
(1). f is quasi-convex in x for every fixed ϵ ∈ T and continuous on Rn × T ;
(2). R is closed at every ϵ near ϵ̄ and open at ϵ̄.
(3). R is convex-valued near ϵ̄ (i.e. R(ϵ) is convex near for ϵ near ϵ̄);
then S(ϵ) is nonempty and uniformly compact near ϵ̄ if and only if S(ϵ̄) is
nonempty and compact.

Theorem (Theorem 2.4 in [FI90])

For P (ϵ), if
(1). f(x, ϵ) = max{f1(x, ϵ), f2(ϵ)}, where f1 is continuous on Rn × T and
strictly quasi-convex in x for each fixed ϵ ∈ T , and f2 is continuous on T ;
(2). R is nonempty, convex-valued, and continuous on T ;
then S is continuous and convex-valued on T .

In order to specialize these general theorems to the concrete nonlinear (or linear)
programming problem P1(ϵ), we need to know the conditions that guarantee the
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Continuity VI

continuity of an inequality and/or equality constraint map R of P1(ϵ). The
following two theorems are concerned with the constraint map:

R(ϵ) := {x ∈M : g(x) ≤ ϵ}, (7)

where M ⊂ Rn, g : Rn → Rp, and ϵ ∈ Rp.

Theorem (Theorem 2.5 in [FI90])

For the map R of (7), suppose that M = Rn, g is continuous on Rn, and that
R(ϵ̄) is compact. Then
(1). R is upper semi-continuous at ϵ̄ if and only if there exists a vector ϵ′ > ϵ̄ such
that R(ϵ′) is a compact set.
(2). if the set R0(ϵ̄) := {x ∈ Rn : g(x) < ϵ̄} is nonempty, then R is lower
semi-continuous at ϵ̄ if and only if R0(ϵ̄) = R(ϵ̄), namely,

{x ∈ Rn : g(x) < ϵ̄} = R0(ϵ̄) = R(ϵ̄) = {x ∈ Rn : g(x) ≤ ϵ̄}
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Continuity VII

Note that in (1) of the above theorem, the compactness of R(ϵ̄) and the upper
semi-continuity of R at ϵ̄ imply the closedness of R at ϵ̄.

Theorem (Theorem 2.6 in [FI90])

For the map R of (7), suppose that M is compact and convex, and that gi are lsc
and strictly convex on M . Then R is closed (i.e. upper semi-continuous, under
the assumptions) and open (i.e. lower semi-continuous) at every ϵ ∈ dom(R)
relative to dom(R), where dom(R) := {ϵ ∈ Rp : R(ϵ) ̸= ∅}.

The next theorem, dut to Dantzig et al., is concerned with a linear inequality (and
equality) constraint:

R(A, b) := {x ∈M : Ax ≥ b}, (8)

where M ⊂ Rn, A is a p× n real matrix, and b ∈ Rp.
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Continuity VIII

Theorem (Theorem 2.7 in [FI90])

Let Ā be a p× n real matrix consisting of p row vectors ā⊤i ∈ Rn, i = 1, ..., p,
b̄ ∈ Rp, and

I := {i = 1, ..., p : ā⊤i x = b̄i,∀x ∈ R(Ā, b̄)}.

If the matrix ĀI , whose rows are ā⊤i , i ∈ I, has full rank, then, for every sequence
{(An, bn)} converging to (Ā, b̄), either

limn→∞R(An, bn) = R(Ā, b̄),

or R(An, bn) is empty for infinitely many n, and consequently, R is closed and
open at (Ā, b̄) relative to dom(R) if (Ā, b̄) ∈ dom(R).

We next consider nonlinear inequality constraints. Let

R(ϵ) := {x ∈M : g(x, ϵ) ≤ 0}. (9)
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Continuity IX

Theorem (Theorem 2.8 in [FI90])

For the map R of (9), suppose that M is closed, g is continuous on M × {ϵ̄},
and that

{x ∈M : g(x, ϵ̄) < 0} = R(ϵ̄),

then R is closed and open at ϵ̄.

Theorem (Theorem 2.9 in [FI90])

For the map R of (9), suppose that M is compact and convex, g is continuous on
M × T , and that gi are strictly convex on M for each fixed ϵ ∈ T . Then R is
closed and open at every ϵ ∈ dom(R) relative to dom(R).

By using implicit function theorem, Aiyoshi extends Theorem 2.8 to the
inequality-equality constrained case.
Stein-Topkis essentially show that, for P (ϵ), if f and R are locally Lipschitz (in
the sense of Hausdorf distance), then f⋆ is locally Lipschitz. For the
inequality-equality constrained problem P1(ϵ), some constraint qualifications
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Continuity X

(e.g. MFCQ and LICQ) and the uniform compactness of R are sufficient for f⋆ to
be (locally Lipschitz) continuous.
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Convexity of Optimal-value Function I

Throughout this section it is assumed that T ⊂ Rr is nonempty and convex.

Definition (Convex Map)

A point-to-set map R : T → 2R
n

is said to be convex (concave) on T if for all
ϵ1, ϵ2 ∈ T and λ ∈ (0, 1)

λR(ϵ1) + (1− λ)R(ϵ2) ⊂ (⊃)R (λϵ1 + (1− λ)ϵ2) . (10)

If in (10), the inclusion ⊂ holds only for all ϵ1 ̸= ϵ2 ∈ T and λ ∈ (0, 1), then
R is said to be essentially convex on T .

R is said to be essentially affine on T if R is both essentially convex and
concave on T .

Minghao Mou MPNP March 28, 2024 15 / 22



Convexity of Optimal-value Function II

Theorem (Theorem 3.1 in [FI90])

For P (ϵ), suppose that f is jointly convex on {(x, ϵ) : x ∈ R(ϵ), ϵ ∈ T}, and that
R is essentially convex on T . Then f⋆ is convex on T .

Definition (Quasi-convexity)

A function ϕ :M → R is said to be (strictly) quasi-convex on a convex set M if,
for all x1, x2 ∈M and λ ∈ (0, 1)

ϕ(λx1 + (1− λ)x2) ≤ (<)min{ϕ(x1), ϕ(x2)}. (11)

Theorem (Theorem 3.2 in [FI90])

For P1(ϵ), suppose that gi are jointly quasi-convex on M × T , hj are jointly affine
on M × T , and that M is convex. Then R is convex on T .
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Convexity of Optimal-value Function III

Theorem (Theorem 3.3 in [FI90])

For P (ϵ), suppose that f is jointly concave on Rn × T , and that R is concave on
T . Then f⋆ is concave on T .

Theorem (Theorem 3.4 in [FI90])

For P0(ϵ), suppose that f is concave in ϵ on T for all x ∈M . Then f⋆ is concave
on T .

Theorem (Theorem 3.5 in [FI90])

For P (ϵ), suppose that f is jointly affine on Rn × T , R is essentially affine on T ,
and that T ⊂ dom(R). Then f⋆ is both convex and concave on T , and S is
essentially affine on T .
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Differential Stability I

A number of results on the rate of change in f⋆ under small perturbations have
been obtained by means of the first- and second-order directional derivatives of f⋆

in the direction along which the perturbation is made. The first result is due to
Danskin.

Theorem (Theorem 4.1 in [FI90])

For P0(ϵ), suppose that T = Rr, and that f and ∇ϵf are continuous on
M ×N(ϵ), where N(ϵ) is a neighborhood of ϵ ∈ Rr. Then f⋆ is locally Lipschitz
near ϵ, directionally differentiable at ϵ, and

Df⋆(ϵ; v) = min
x∈S(ϵ)

∇ϵf(x, ϵ)v. (12)

Another theorem, dut to Gauvin-Dubeau and Fiacco, gives lower and upper
bounds for the directional derivative of f⋆ in P1(ϵ). In the sequel, we assume in
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Differential Stability II

P1(ϵ), M = Rn, and that f, g, and h are continuously differentiable in (x, ϵ). The
Lagrangian and the set of multipliers of P1(ϵ) are defined as follows:

L(x, u, w, ϵ) = f(x, ϵ)− u⊤g(x, ϵ) + w⊤h(x, ϵ),

K(x, ϵ) = {(u,w) ∈ Rp × Rq : ∇xL(x, u, w, ϵ) = 0, uigi(x, ϵ) = 0, ui ≥ 0, i ∈ [p]}.
(13)

Definition (Mangasarian-Fromovitz Constraint Qualification (MFCQ))

We say that MFCQ holds at x ∈ R(ϵ) for P (ϵ) if
(1). the vectors {∇xhj(x, ϵ), j ∈ [p]} are linearly independent;
(2). there exists z ∈ Rn such that

∇xgi(x, ϵ) > 0, i ∈ A(x, ϵ)

∇xhj(x, ϵ) = 0,∀j ∈ [q],
(14)

where A(x, ϵ) := {i ∈ [p] : gi(x, ϵ) = 0}.
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Differential Stability III

Theorem (Theorem 4.2 in [FI90])

For P1(ϵ), suppose that M = Rn, that R(ϵ) ̸= ∅ and R is uniformly compact near
ϵ ∈ Rr, and that (MFCQ) holds at each x ∈ S(ϵ). Then f⋆ is locally Lipschitz
near ϵ, and for any v ∈ Rr,

inf
x∈S(ϵ)

min
(u,w)∈K(x,ϵ)

∇ϵL(x, u, w, ϵ) ≤ lim inf
β→0+

1

β
[f⋆(ϵ+ βv)− f⋆(ϵ)]

≤ lim sup
β→0+

1

β
[f⋆(ϵ+ βv)− f⋆(ϵ)]

≤ inf
x∈S(ϵ)

max
(u,w)∈K(x,ϵ)

∇ϵL(x, u, w, ϵ)

(15)

Furthermore, if f and g are convex on Rn × {ϵ}, and if h is affine on Rn × {ϵ},
then f⋆ is directionally differentiable at ϵ, and

Df⋆(ϵ; v) = min
x∈S(ϵ)

max
(u,w)∈K(ϵ)

∇ϵL(x, u, w, ϵ)v, (16)

where, under the assumptions K(x, ϵ) = K(ϵ) is constant for x ∈ S(ϵ).
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Differential Stability

There are two immediate consequences of Theorem 4.2. Under stronger CQ than
(MFCQ) at x ∈ S(ϵ) (e.g. (SMFCQ), or (LICQ)), K(x, ϵ) reduces to a singleton,
say {u(x), w(x)}, so that (16) reduces to

Df⋆(ϵ; v) = min
x∈S(ϵ)

∇ϵL[x, u(x), w(x), ϵ]v (17)

Another special case is the jointly convex case: if f and g are jointly convex and h
is jointly affine on Rn × Rr, then for each (u,w) ∈ K(x, ϵ), ∇ϵL(x, u, w, ϵ) does
not depend on x ∈ S(ϵ), and hence (16) becomes

Df⋆(ϵ; v) = max
(u,w)∈K(ϵ)

∇ϵL(x, u, w, ϵ)v, (18)

where x ∈ S(ϵ). Since in this case, f⋆ is convex (since f is jointly convex and
R(ϵ) is convex for all ϵ. See Theorem 3.1). The above equation means that for
each x ∈ S(ϵ) and (u,w) ∈ K(x, ϵ), ∇ϵL(x, u, w, ϵ) is a subgradient of f⋆ at ϵ.
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