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The Problem 1

P(e):
min £(,e), (12)
s.t. z € R(e), (1b)
where e e T C R, R: e 2R".
Py (e):
Irgn f(zye), (2a)
st.z € R(e) :={x € M :g(x,e) <0,h(z,e) =0}, (2b)
where M C R™, g: R" xT — RP, and h: R" x T — E1.
Py(e):
min /(z,¢), (32
stz € M, (3b)
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Preliminaries

Definition (Locally Lipschitz)

A function ¢ : R” — R/ is said to be locally Lipschitz near z € R” if there is a
neighborhood N(Z) of Z and a L > 0 such that

16(21) — ¢(22)[| < Lllz1s — 2afl, V21,22 € N(2). (4)

v

Definition (Directional Derivative)

The directional derivative of ¢ at the point Z in the direction v € R" is defined as

D(z;0) = lim_+ [6(2+ Bv) - 6(2)]. (5)

v

If the above limit exists for every v € R", we say ¢ is directionally differentiable at
z. Directionally differentiability does not imply differentiability.
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Continuity |

In this section we will consider conditions under which the optimal-value function
f* and the optimal solution map S are continuous. We begin with definitions of
continuity of a point-to-set map. Let 7' be a metric space, ¢ : T — 28", and
ecT.

Definition (Semi-continuity)

A point-to-set function v is said to be upper (lower) semi-continuous at € if for
each open set O C R" satisfying ¥(€) € O (¢(€) N O # ), there exists a
neighborhood N (€) such that ¥(e) C O (¢(e) N O # 0), for all € € N(é).

Definition (Closedness)

A point-to-set function ¥ is said to be closed at € if €, € T, €, — €z, € ¥(€y),
and z,, — T imply T € ().
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Continuity Il

Definition (Openness)

A point-to-set function v is said to be open at € if €, € T, ¢, — €, and T € ¢(€)
imply that 3m and {x,,} such that =, € ¥(e,) for all n > m and z,, — Z.

Definition (Uniform Compactness)

A point-to-set function v is said to be uniformly compact near € if the set
Ueen(e)¥(€) is bounded for some neighborhood N (€).

Definition
Let {A,} be a sequence of subsets of R™. The inner limit of {A,} is defined as

lim A, = {x € R" : Im, {z,} such that z,, € 4,,,Yn > m,z, — z}. (6)

——n—o0* Mmn

Hogan showed that (a) lower semicontinuity and openness at a point are
equivalent, and (b) if ¢ is uniformly compact near €, then ¢ is closed if and only if
1 (€) is compact and 1 is upper semicontinuous at €.
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Continuity 111

W is closed (open) at € if and only if lim,,_,  ¥(en) C (D)(€), for any {e,} CT
such that €,, — €.

Definition (Continuity)

1 is continuous at € if it is upper semicontinuous and lower semicontinuous at €.

Theorem (Theorem 2.1 in [FI90])

For P(e), we have

(a). If R is lower semicontinuous at €, and f is usc on R(€) x {€}, then f* is usc
at €.

(b). If R is upper semicontinuous at €, R(€) is compact, and f is Isc on

R(€) x {€}, then f* is Isc at €.
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Continuity IV

Theorem (Theorem 2.2 in [FI90])

For P(e), if

(1). f is continuous on R(€) x {€},

(2). R is closed and open (i.e. lower semi-continuous) at €;
(3). S(€) is nonempty and a singleton;

(4). S is uniformly compact near €;

then S is closed and open (under (4), S is continuous) at &.

Note that (1) openness is equivalent to lower semi-continuity, and (2) uniform
compactness + closedness imply upper semi-continuity. Therefore, S is
continuous.
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Theorem (Theorem 2.3 in [FI90])

For P(e), if

(1). f is quasi-convex in x for every fixed e € T and continuous on R"™ x T';
(2). R is closed at every ¢ near € and open at e.

(3). R is convex-valued near € (i.e. R(€) is convex near for € near €);

then S(€) is nonempty and uniformly compact near € if and only if S(€) is
nonempty and compact.

Theorem (Theorem 2.4 in [FI90])

For P(e), if

(1). f(x,€) = max{fi(x,¢), f2(€)}, where f1 is continuous on R™ x T and
strictly quasi-convex in x for each fixed ¢ € T', and f5 is continuous on T';
(2). R is nonempty, convex-valued, and continuous on T';

then S is continuous and convex-valued on T'.

In order to specialize these general theorems to the concrete nonlinear (or linear)
programming problem Pj(e), we need to know the conditions that guarantee the
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Continuity VI

continuity of an inequality and/or equality constraint map R of Py(e). The
following two theorems are concerned with the constraint map:

R(e) :={r € M : g(x) <€}, ()
where M C R",g: R™ — RP, and € € RP.

Theorem (Theorem 2.5 in [FI90])

For the map R of (7), suppose that M = R", g is continuous on R™, and that
R(€) is compact. Then

(1). R is upper semi-continuous at € if and only if there exists a vector € > € such
that R(€') is a compact set.

(2). if the set R%(€) := {x € R™ : g(x) < €} is nonempty, then R is lower
semi-continuous at € if and only if R°(€) = R(€), namely,

[ZER":g(z) <& = RB(e) = R() = {z e R" : g() < &}
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Continuity VII

Note that in (1) of the above theorem, the compactness of R(€) and the upper
semi-continuity of R at € imply the closedness of R at €.

Theorem (Theorem 2.6 in [FI90])

For the map R of (7), suppose that M is compact and convex, and that g; are Isc
and strictly convex on M. Then R is closed (i.e. upper semi-continuous, under
the assumptions) and open (i.e. lower semi-continuous) at every € € dom(R)
relative to dom(R), where dom(R) := {e € R? : R(e) # 0}.

The next theorem, dut to Dantzig et al., is concerned with a linear inequality (and

equality) constraint:
R(A,b) :={x € M : Az > b}, (8)

where M C R", Ais a p X n real matrix, and b € RP.
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Continuity VIII

Theorem (Theorem 2.7 in [FI90])

Let A be a p x n real matrix consisting of p row vectors a; € R",i=1,...,p,
b e RP, and

I:'={i=1,..,p:a x =0b;,Vz € R(4,b)}.

If the matrix A;, whose rows are a; ,i € I, has full rank, then, for every sequence

{(A,,bn)} converging to (A,b), elther

or R(A,,by,) is empty for infinitely many n, and consequently, R is closed and

open at (A,b) relative to dom(R) if (A,b) € dom(R).

We next consider nonlinear inequality constraints. Let

R(e) :=={x € M : g(x,¢e) <0}.
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Continuity IX

Theorem (Theorem 2.8 in [FI90])

For the map R of (9), suppose that M is closed, g is continuous on M x {€},
and that

{zx e M : g(z,€) <0} = R(e),

then R is closed and open at €.

Theorem (Theorem 2.9 in [FI90])

For the map R of (9), suppose that M is compact and convex, g is continuous on
M x T, and that g; are strictly convex on M for each fixed e € T. Then R is
closed and open at every € € dom(R) relative to dom(R).

By using implicit function theorem, Aiyoshi extends Theorem 2.8 to the
inequality-equality constrained case.

Stein-Topkis essentially show that, for P(e), if f and R are locally Lipschitz (in
the sense of Hausdorf distance), then f* is locally Lipschitz. For the
inequality-equality constrained problem P;(¢), some constraint qualifications
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(e.g. MFCQ and LICQ) and the uniform compactness of R are sufficient for f* to
be (locally Lipschitz) continuous.
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Convexity of Optimal-value Function |

Throughout this section it is assumed that 7" C R" is nonempty and convex.

Definition (Convex Map)

A point-to-set map R : T — 2% is said to be convex (concave) on T if for all
€1,60 €T and X € (0,1)

AR(e1) + (1 — NR(e2) € (O)R (Mer + (1 — Nea) . (10)

e If in (10), the inclusion C holds only for all €1 # €2 € T and A € (0, 1), then
R is said to be essentially convex on T

@ R is said to be essentially affine on T if R is both essentially convex and
concave on T
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Convexity of Optimal-value Function Il

Theorem (Theorem 3.1 in [FI90])

For P(e), suppose that f is jointly convex on {(x,¢) : ¢ € R(e),e € T'}, and that
R is essentially convex on T'. Then f* is convex on T

Definition (Quasi-convexity)

A function ¢ : M — R is said to be (strictly) quasi-convex on a convex set M if,
for all z1,22 € M and X € (0,1)

p(Azy + (1 = Naz) < (<) min{d(z1), d(22)}. (11)

v

Theorem (Theorem 3.2 in [FI90])

For Py (€), suppose that g; are jointly quasi-convex on M x T, h; are jointly affine
on M x T, and that M is convex. Then R is convex on T'.

v
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Convexity of Optimal-value Function IlI

Theorem (Theorem 3.3 in [FI90])

For P(e), suppose that f is jointly concave on R™ x T, and that R is concave on
T. Then f* is concave on T

Theorem (Theorem 3.4 in [FI90])

For Py(€), suppose that f is concave in € on T for all z € M. Then f* is concave
onT.

v

Theorem (Theorem 3.5 in [FI90])

For P(e), suppose that f is jointly affine on R™ x T, R is essentially affine on T,
and that T C dom(R). Then f* is both convex and concave on T, and S is
essentially affine on T.
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Differential Stability |

A number of results on the rate of change in f* under small perturbations have
been obtained by means of the first- and second-order directional derivatives of f*
in the direction along which the perturbation is made. The first result is due to
Danskin.

Theorem (Theorem 4.1 in [FI90])

For Py(€), suppose that T = R", and that f and V.f are continuous on
M x N (€), where N(e) is a neighborhood of ¢ € R". Then f* is locally Lipschitz
near e, directionally differentiable at €, and

Df*(e;v) = min V. f(z,e)v. (12)
z€S(e)

Another theorem, dut to Gauvin-Dubeau and Fiacco, gives lower and upper
bounds for the directional derivative of f* in P;(e). In the sequel, we assume in
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Differential Stability Il

Pyi(e), M =R"™, and that f, g, and h are continuously differentiable in (x,¢). The
Lagrangian and the set of multipliers of P;(€) are defined as follows:

L(z,u,w,€) = f(z,€) — uTg(xae) + U}Th(gjve)’
K(SL‘,G) = {(u7w) ERP xRY: vxL(xauaw7€) = Oau’igi(z7e) = Oaui > OaZ € [p]}
(13)

Definition (Mangasarian-Fromovitz Constraint Qualification (MFCQ))

We say that MFCQ holds at = € R(e) for P(e) if
(1). the vectors {V h;(z,¢€),j € [p]} are linearly independent;
(2). there exists z € R™ such that

Vegi(z,€) > 0,7 € Az, €)
v:thj(xve) = O,Vj € [Q]a

where A(z,€) := {i € [p] : gi(z,€) = 0}.
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Differential Stability Il

Theorem (Theorem 4.2 in [FI90])

For Py (¢€), suppose that M = R"™, that R(e) # 0 and R is uniformly compact near
e € R", and that (MFCQ) holds at each x € S(e). Then f* is locally Lipschitz
near €, and for any v € R",

1
inf min V. L(z,u,w,e) < liminf = [f*(e + Bv) — f*(e
z€S(€) (u,w)EK (z,€) ( ) B—0+ ﬂ [f ( ﬂ ) f ( )]

<limsup % [f*(e + o) = (9] (15)
g0t B
< inf max V. L(x,u,w,e€)

z€S(€) (u,w)EK (z,€)

Furthermore, if f and g are convex on R™ x {e}, and if h is affine on R™ x {e},
then f* is directionally differentiable at €, and

Df*(e;v) = min max V.L(z,u,w,é€)v, 16
f ( ) z€S(€) (u,w)EK (€) ( ) ( )

where, under the assumptions K (x,¢) = K(¢) is constant for z € S(€).

= = = = =
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Differential Stability

There are two immediate consequences of Theorem 4.2. Under stronger CQ than
(MFCQ) at z € S(e) (e.g. (SMFCQ), or (LICQ)), K(z,€) reduces to a singleton,
say {u(z), w(x)}, so that (16) reduces to

Df*(e;v) = min V. L[z, u(z),w(z),€v (17)
z€S(e)
Another special case is the jointly convex case: if f and g are jointly convex and h
is jointly affine on R™ x R”, then for each (u,w) € K(z,€), V. L(z,u,w,€) does
not depend on = € S(e), and hence (16) becomes

Df*(e;v) = max V.L(z,u,w,é€)v, 18
Plav) = max VoL (18)

where € S(€). Since in this case, f* is convex (since f is jointly convex and
R(e) is convex for all . See Theorem 3.1). The above equation means that for
each z € S(e) and (u,w) € K(x,¢€), VcL(x,u,w,€) is a subgradient of f* at e.
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