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1 Convex Analysis

Definition 1.1 (Cone). A nonempty set S ⊂ Rn is a cone if x ∈ C implies
αx ∈ C for all α > 0.

Remark 1.2. A cone may not be convex/closed/bounded.

Theorem 1.3 (Closed-Point). Let S ̸= ∅, closed, and convex in Rn. For any
y /∈ S, there exists a x̃ ∈ S such that

∥x̃− y∥2 ≤ ∥x− y∥2, ∀x ∈ S.

We can the point x̃(y) the projection of y onto S.

Theorem 1.4 (Separation of Convex Sets). Let S ⊂ Rn be nonempty, closed,
and convex. Let y /∈ S, then there exists a p ∈ Rn and a α ∈ R such that
pTy > α and pTx ≤ α, ∀x ∈ S.

Theorem 1.5 (Supporting Hyperplane). Let S ⊂ Rn be nonempty, closed,
and convex. Then for any x̄ ∈ ∂S, there exists a p ∈ Rn such that the
hyperplane H := {x : pT(x− x̄) = 0} supports S at x̄, namely,

pT(y − x̄) ≥ (≤)0, ∀y ∈ S.

Theorem 1.6. If f : X → R is convex, then f is continuous on int(X).

Definition 1.7 (Subgradient). Let X ̸= ∅ and be convex in Rn, and f :
X → R be convex. Then g is called a subgradient of f at x̄ ∈ X if

f(x) ≥ f(x̄) + gT(x− x̄), ∀x ∈ X.

Definition 1.8 (Subdifferential). The subdifferential of f at x̄ is the collec-
tion of all subgradients of f at x̄. Namely,

∂f(x̄) := {g : f(x) ≥ f(x̄) + gT(x− x̄), ∀x ∈ X}.

Remark 1.9. ∂f(x̄) ̸= ∅ for all f .
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2 Optimality Conditions

2.1 Convex Problem

Even though we have a convex objective and a convex set, we may still do
not have existence of optimal solution.

Theorem 2.1 (Weierstrass). For X ⊂ Rn nonempty and f : X → R con-
tinuous. An optimal solution to minx∈X f(x) exists if and only if one of the
followings holds:

1. X is compact.

2. X is closed and f is coercive1.

3. ∃γ such that {x : f(x) ≤ γ} is nonempty and compact.

Lemma 2.2. A local minimizer to a convex program is also a global mini-
mizer.

Lemma 2.3. If f is strictly convex, then there can be at most one optimal
solution.

Theorem 2.4 (Optimality Condition). If f is differentiable, x⋆ is an optimal
solution if and only if

∇f(x⋆)T(x− x⋆) ≥ 0, ∀x ∈ X. (1)

Remark 2.5. Equation (1) is actually the variational inequality VI(∇f,X).

2.2 General Unconstrained Problem

Assume that f is smooth enough.

With convexity. x⋆ is optimal if and only if ∇f(x⋆) = 0.

Without convexity. First-order necessary condition: If x⋆ is a local min-
imizer, then ∇f(x⋆) = 0. Second-order sufficient condition: If ∇f(x⋆) = 0
and ∇2f(x⋆) is PD, then x⋆ is a local minimizer. Replace PD by PSD, we
obtain the second-order necessary condition.

1f is said to be coercive if lim∥x∥→+∞ f(x) = ∞.
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General Non-linear Programming. f may be non-convex and X may
not be convex either. Before presenting the optimality conditions, we will first
introduce some new concepts. Actually, the optimality conditions derived
will be very abstract and will not be helpful in finding optimal solutions.

Definition 2.6 (Cone of Feasible Directions). For X ̸= ∅ in Rn and let
x̄ ∈ cl(X).

FX(x̄) := {d ∈ Rn|d ̸= 0, x̄+ τd ∈ X, ∀τ ∈ (0, δ),∃δ > 0},

is called the cone of feasible directions of X at x̄.

Definition 2.7 (Cone of Descent Directions). The cone of descent directions
of f : X → R at x̄ ∈ X is

DX(x̄) := {d : f(x̄+ τd) < f(x̄),∀τ ∈ (0, δ), ∃δ > 0}.

The optimality condition for any general non-linear programs can be writ-
ten as FX(x

⋆)∩DX(x
⋆) = ∅, which simply means that any feasible direction

is not a descent direction. Usually, it is difficult to characterize FX(·) and
DX(·).

Lemma 2.8. Define D0(x̄) := {d : ∇f(x̄)Td < 0}. Then, D0(x̄) ⊂ DX(x̄).

Definition 2.9 (Tangent Cone). The tangent cone of X at x̄ ∈ X is defined
as

TX(x̄) :=

{
d : d = 0 or ∃{xk}k ⊂ X, xk ̸= x̄, ∀k, xk → x̄,

xk − x̄

∥xk − x̄∥
→ d

∥d∥

}
.

Lemma 2.10. FX(x̄) ⊂ TX(x̄).

Theorem 2.11 (Optimality Condition). x⋆ is optimal if and only if TX(x
⋆)∩

D0(x
⋆) = ∅.

Proof. Let d ∈ TX(x
⋆). WLOG assume that d ̸= 0. Otherwise it is trivial.

Apply the definition of tangent cone to find a xk → x⋆. Apply first-order
Taylor expansion to f(xk), centered at x⋆, one can prove that ∇f(x⋆)Td ≥ 0.
Therefore d /∈ D0(x

⋆).

Remark 2.12. This result is non-trivial since FX(x
⋆) ∩ DX(x

⋆) = ∅ does
not imply TX(x

⋆) ∩ D0(x
⋆) = ∅.
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Let X := {x ∈ Rn : gi(x) ≤ 0, hj(x) = 0, i = 1, 2, ...,m, j = 1, 2, ..., n}.

Definition 2.13 (Linearized Cone).

LX(x̄) := {d : ∇gi(x̄)Td ≤ 0,∇hj(x̄)Td = 0, i ∈ A(x̄), j = 1, 2, ..., n},

where A(x̄) := {i ∈ [m] : gi(x̄) = 0}.

Lemma 2.14. FX(x̄) ⊂ TX(x̄) ⊂ LX(x̄).

Consider an example

Example 2.15.

min
x1,x2

− x1 − x2, (2a)

s.t. x21 + x22 ≤ 0, (2b)

x1 ≥ 0, x2 ≥ 0. (2c)

If one computes the D0((0, 0)), linearized, and tanget cones at (0, 0), we have
LX((0, 0))∩D0((0, 0)) ̸= ∅. The so-called constraint qualification guarantees
that TX(x̄) = LX(x̄) for locally optimal x̄. Therefore, one can check LX(x̄)∩
D0(x̄) to determine the optimality. As another example, the constraints are
equivalent to x1 = x2 = 0. In this case, we have TX((0, 0)) = LX((0, 0)) ∩
D0((0, 0)) = ∅.

Theorem 2.16 (First-Order Necessary Condition: Karush-Khun-Tucker
(KKT) Condition). Assume f, gi, and hj are all continusouly differentiable.
If the optimization problem

min
x

f(x), (3a)

s.t. gi(x) ≤ 0, i ∈ [m] (3b)

hj(x) = 0, j ∈ [n], (3c)

has x⋆ as its local minimizer and TX(x
⋆) = LX(x

⋆), then ∃λ ∈ Rm and
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µ ∈ Rn such that

∇f(x⋆) +
m∑
i=1

λi∇gi(x⋆) +
n∑

j=1

µj∇hj(x⋆) = 0,

λ ≥ 0, µ ≥ 0,

λTg(x⋆) = 0,

µTh(x⋆) = 0,

g(x⋆) ≤ 0,

h(x⋆) = 0.

(4)

Remark 2.17. The proof of the theorem uses the famous Farkas’ Lemma.
We state the lemma here: Exactly one of the two linear systems of equations{

ATx ≤ 0,

cTx > 0
,

{
ATy = c,

y ≥ 0,

has a solution.

2.3 More on Constraint Qualification

(1) Guiguard CQ. T D
X (x̄) = LD

X(x̄) (dual cone).

2) Abadie CQ. TX(x̄) = LX(x̄).

3) MFCQ. ∃d such that ∇gi(x̄)Td < 0,∀i ∈ A(x̄), ∇hj(x̄)Td = 0, and
∇hj(x̄)’s are linearly independent for all j ∈ [n]. MFCQ is equivalent to the
boundedness of Lagrange multipliers.

4) LICQ. {∇gi(x̄), i ∈ A(x̄),∇hj(x̄), ∀j ∈ [n]} are linearly independent,
which is equivalent to the uniqueness of Lagrange multipliers.

5) Slater’s CQ. gi are all convex for all i and ∃x0 ∈ X such that gi(x0) < 0
for all i.

6) LCQ. All constraints are linear.
Implication: 4) → 3) → 2) → 1); 6) → 2).
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3 Game Theory

3.1 Existence of Nash Equilibrium

Definition 3.1 (Normal Form). The normal form of a game is {N, {Xi}Ni=1, {πi}Ni=1},
where N is the number of players, Xi is the action space of the i-th player,
and πi :

∏N
i=1Xi → R is the utility function of the i-th player.

Definition 3.2 (Complete Information). A game is said to be of complete
information if the normal form is known to all players.

Definition 3.3 (Nash Equilibrium). The action profile (x⋆1, x
⋆
2, ..., x

⋆
N) ∈∏N

i=1Xi is said to be a (pure-startegy) Nash equilibrium if

πi(x
⋆
i , x

⋆
−i) ≥ πi(xi, x

⋆
−i), ∀xi ∈ Xi. (5)

Definition 3.4 (Mixed-Strategy Nash Equilibrium). A mixed-strategy pro-
file (σ⋆

1, ..., σ
⋆
N) ∈

∏N
i=1 ∆(Xi) is a mixed-strategy Nash equilibrium of G :=

{N, {Xi}Ni=1, {πi}Ni=1} if for all i,

πi(σ
⋆
i , σ

⋆
−i) ≥ ui(σi, σ

⋆
−i), ∀σi ∈ ∆(Xi), (6)

where ∆(Xi) := {p ∈ R|Xi| : 1Tp = 1, p ≥ 0}.

Theorem 3.5. Every game G := {N, {Xi}Ni=1, {πi}Ni=1} with Xi being finite
for all i has a mixed-strategy Nash equilibrium.

Proof. The proof follows from the existence of pure-strategy Nash equilib-
rium.

Definition 3.6 (Quasi-Concave). A function f : X → R is said to be quasi-
concave if for all x, y ∈ X and λ ∈ [0, 1],

f(λx+ (1− λ)y) ≥ min{f(x), f(y)}.

Lemma 3.7. A function f is quasi-concave if all the level sets of −f are
convex.

Definition 3.8 (Upper-hemicontinuity). Given X ⊂ Rn and Y ⊂ Rm. A
set-valued function ψ : X → Y is upper hemicontinuous at x ∈ X if for any
open set U ⊂ Y such that ψ(x) ∈ U , there exists a ϵ > 0 such that for any
x′ ∈ Bϵ(x), ψ(x

′) ⊂ U .
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Lemma 3.9. Assume Y is compact. If for all sequence {an} → a ∈ X,
bn ∈ ψ(an), bn → b, we have b ∈ ψ(a), then ψ is upper hemicontinuous.

Theorem 3.10 (Kakutani Fixed Point Theorem). Suppose X ⊂ Rn is
nonempty and compact, ψ : X → X is upper hemicontinuous, and ψ(x) ⊂ X
is nonempty and convex for all x ∈ X. Then ∃x⋆ ∈ X such that x⋆ ∈ ψ(x⋆).

Theorem 3.11 (Existence of Pure-strategy Nash Equilibrium). Consider a
normal form game {N, {Xi}Ni=1, {πi}Ni=1}. If

1. Xi is nonmepty, convex, and compact,

2. πi(xi, x−i) is continuous in (xi, x−i) and quasi-concave in xi,

then, a pure-strategy Nash equilibrium exists.

Proof. Step 1. We first show that for any x ∈
∏N

i=1Xi, the best response
BR(x) is nonempty. Note that

BR(x) = BR1(x−1)× BR2(x−2)× · · · × BRN(x−N)

= argmax
x1

π1(x1, x−1)× argmax
x2

π2(x2, x−2)× · · · × argmax
xN

πN(xN , x−N)

For ant i ∈ [N ], according to Weierstrass, argmaxxi
πi(xi, x−i) is nonempty.

Step 2. BR(x) is convex. It is sufficient to show that for each i, BRi(x−i) is
convex. This is achieved by the fact that πi is quasi-concave in xi.
Step 3. BR(x) is upper hemicontinuous. For any sequence {(xni , xn−i)} →
(x̄i, x̄−i) ∈ BR(x). Let (yni , y

n
−i) ∈ BR(xni , x

n
−i) be such that (yni , y

n
−i) →

(ȳi, ȳ−i), we know that for any i,

yni ∈ BRi(x
n
−i) ⇒ πi(y

n
i , x

n
−i) ≥ πi(xi, x

n
−i), ∀xi ∈ Xi.

Therefore,

πi(ȳi, x̄−i) = lim
n→∞

πi(y
n
i , x

n
−i) ≥ lim

n→∞
πi(xi, x

n
−i) = π(xi, x̄−i),∀xi ∈ Xi, (7)

which implies ȳi ∈ BRi(x̄−i). Therefore, (ȳi, ȳ−i) ∈ BR(x̄i, x̄−i) and hence
BR(x) is upper-hemicontinuous.

Put step 1,2, and 3 together, we can apply the Kakutani fixed point
theorem, which guarantees the existence of x⋆ such that x⋆ ∈ BR(x⋆). x⋆ is
exactly a pure-strategy Nash equilibrium.
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3.2 Duopolistic Cournot Game

Suppose we have two firms each decides to produce q1 and q2 amount of
certain product respectively. The market price of the product is α−β(q1+q2),
where α, β > 0 are given constants. Assume also the each firm pays qi, i = 1, 2
to produce the product. The optimization problem for the i-th firm is

max
qi

(α− β(q1 + q2))qi − qi, (8a)

s.t. qi ≥ 0. (8b)

The KKT condition for the problem is

2βqi + βq−i − α + 1 = λi, (9a)

λiqi = 0, (9b)

λi ≥ 0, (9c)

qi ≥ 0. (9d)

If we stack the conditions for all i = 1, 2, we have

0 ≤
[
q1
q2

]
⊥

[
−α + 1
−α + 1

]
+

[
2β β
β 2β

] [
q1
q2

]
≥ 0, (10)

which can be exactly written in the form

0 ≤ x ⊥ g +Mx ≥ 0, (11)

where x := [g1, g2]
T, g := [−α + 1,−α + 1]T, and M := [2β, β; β, 2β]T.

3.3 Linear Complementarity Problem

We call the problem of finding a x such that 0 ≤ x ⊥ g + Mx ≥ 0 as
linear complementarity problem (LCP) and denote it as LCP(g,M). We call
LCP(g,M) is feasible if there exists a x0 such that x0 ≥ 0 and g+Mx0 ≥ 0.
We call it solvable if there exists a x⋆ such that 0 ≤ x⋆ ⊥ g +Mx⋆ ≥ 0.

Consider the following quadratic program:

min
x

xT(g +Mx), (12a)

s.t. g +Mx ≥ 0, (12b)

x ≥ 0. (12c)

It is obvious that if x⋆ solves LCP(g,M), then it also solves (12) since xT(g+
Mx) ≥ 0 by the constraints.
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Lemma 3.12. If LCP(g,M) is feasible, then the quadratic program (12) has
an optimal solution z⋆. Moreover, there exists a vector u⋆ of multipliers such
that

(z⋆ − u⋆)i
(
MT(z⋆ − u⋆)

)
i
≤ 0, ∀i. (13)

Proof. Consider the KKT conditions of (12) and let u be the multiplies
associated with the constraint g +Mz ≥ 0.

The previous Lemma allows us to make an important observation about
the solutions of the LCP(g,M) when M is positive semi-definite.

Theorem 3.13. If M is a positive semi-definite matrix of an LCP(g,M)
that is feasible, then the LCP(g,M) is solvable.

Proof. By the previous lemma and the positive semi-definiteness of M , we
can show

(z⋆ − u⋆)MT(z⋆ − u⋆) = 0.

Simple algebra shows that (z⋆)T(g +Mz⋆) = 0.

It has been shown that the nature of LCP(g,M) is greatly affected by
the structure of the matrix M .

Definition 3.14 (S Matrix). A square matrix M ∈ Rn×n is said to be a S
matrix if there exists a z > 0 such that Mz > 0.

Proposition 3.15. An LCP(g,M) is feasible for any g if and only if M is a
S matrix.

Proof. (⇒): Let ḡ < 0. By feasibility there exists a feasible z̃. We know that
Mz̃ > 0. By continuity, there exists z̄ > 0 such that Mz̄ > 0.
(⇐): There exists a z̄ such that z̄ > 0 and Mz̄ > 0. For any g, there exists
a λ > 0 such that M(λz̄) + g ≥ 0 and λz̄ ≥ 0.

Definition 3.16 (Copositiveness). A matrix M ∈ Rn×n is said to be copos-
itive if xTMx ≥ 0,∀x ∈ R+

n . It is strictly copositive if xTMx > 0 for all
nonzero x ∈ R+

n .

Theorem 3.17. If M ∈ Rn×n is strictly copositive, then LCP(g,M) is solv-
able for all g.

Proof. Skipped.
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Next we will consider the uniqueness of solutions to LCP(g,M).

Theorem 3.18. If M ∈ Rn×n is positive definite, then LCP(g,M) has a
unique solution for all q ∈ Rn.

Proof. Feasibility follows from the fact that a PD matrix is also a S matrix2.
Solvability is guaranteed by Theorem 3.17 since PD implies strictly coposi-
tiveness. Finally, any solution to LCP(g,M) is a solution to the QP (12) by
Lemma 3.12. Since the QP is strictly convex. The uniqueness of solution to
LCP(g,M) is proved.

Definition 3.19. A matrix M ∈ Rn×n is a P matrix if the principal minors
are all positive.

Remark 3.20. A PD matrix is a P matrix but the converse is in general

not true. As an example, consider the matrix M :=

[
1 −3
0 1

]
. All principal

minors are positive but it is not PD.

Theorem 3.21. If M ∈ Rn×n is a P matrix, then LCP(g,M) has a unique
solution.

Consider the duopolistic Cournot game with productivity cobstraint 0 ≤
qi ≤ Ki for some Ki > 0. Stack all the KKT conditions gives

0 ≤


q1
q2
λ1
λ2

 ⊥


−α + 1
−α + 1
K1

K2

+


2β β 1 0
β 2β 0 1
−1 0 0 0
0 −1 0 0



q1
q2
λ1
λ2

 ≥ 0. (14)

Note that M is not PD but PSD. Moreover, M is neither a S matrix nor a
P matrix. Therefore, none of our results established so far can guarantee the
uniqueness of LCP(g,M), even the existence is not guaranteed.

2To prove the fact, one needs to apply the Ville’s theorem: Consider the below two
systems of equations: {

Ax > 0,

x > 0

{
ATy ≤ 0,

y ≤ 0.

Either there exists a solution to the first system or there exists a nontrivial solution to the
second system.

11



Lemma 3.22 (ω-Uniqueness). Let M ∈ Rn×n be PSD and g be arbitrary.
Then,

1. If z1, z2 ∈ SOL(g,M) then

zT1 (g +Mz2) = zT2 (g +Mz1) = 0.

2. If in addition thatM is symmetric, thenMz1 =Mz2,∀z1, z2 ∈ SOL(g,M).

3.4 Variational Inequality

As a motivating example, consider again the cournot game. Now, we assume
the price to be α exp(−β

∑2
j=1 qj), where α, β > 0.

Stacking the KKT conditions now gives

0 ≤


q1
q2
λ1
λ2

 ⊥


λ1 + 1− α exp(−β(q1 + q2))(1− β1q1)
λ2 + 1− α exp(−β(q1 + q2))(1− β2q2)

K1 − q1
K2 − q2

 ≥ 0, (15)

which is indeed a non-linear complementarity problem.
Note also that the optimization problem is a convex problem, we can

directly write down the optimality condition.

(yi − qi)
T
(
αe−β(q1+q2) + αβq1e

−β(q1+q2) + 1
)
≤ 0, ∀0 ≤ qi ≤ Ki, i = 1, 2.

(16)
Stacking (16) for i = 1, 2 yields([
y1
y2

]
−

[
q1
q2

])T [
αe−β(q1+q2) + αβq1e

−β(q1+q2) + 1
αe−β(q1+q2) + αβq2e

−β(q1+q2) + 1

]
≤ 0,∀

[
y1
y2

]
∈ [0, K1]×[0, K2].

(17)

Definition 3.23 (Variational Inequality). Variational inequaility (VI), VI(K,F ),
where F : K ⊂ Rn → Rn is to find x⋆ ∈ K such that

(y − x⋆)TF (x⋆) ≥ 0, ∀y ∈ K. (18)

Definition 3.24. LetK be a cone. Complementarity problem (CP) CP(K,F ),
where F : K ⊂ Rn → Rn is to find a x⋆ ∈ K such that x⋆ ∈ K, F (x⋆) ∈ KD,
and

x⋆ ⊥ F (x⋆), (19)

where KD := {v : vTx ≥ 0, ∀x ∈ K} is the dual cone of K.
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Remark 3.25. (VI) does not assume any structure on K but (CP) does
assume it to be a cone.

Lemma 3.26. If K is a cone, then (CP) and (VI) are equivalent.

Proof. (⇒): Suppose x solves VI(K,F ), then for ∀y ∈ K, (y−x)TF (x) ≥ 0.
Since K is a cone, 0 ∈ K, then (0 − x)TF (x) ≥ 0, which implies that
xTF (x) ≤ 0. Also, 2x ∈ K since K is a cone, we thus have xTF (x) ≥ 0
and therefore xTF (x) = 0. Note that (y − x)TF (x) ≥ 0,∀y ∈ K implies
yTF (x) ≥ 0, ∀y ∈ K. Therefore, F (x) ∈ KD.

The reverse implication is obvious.

3.5 Some Special CPs

Example 3.27. K = Rn
+: In this case, KD = R+

n . Therefore, CP(K,F )
becomes x ≤ x ⊥ F (x) ≥ 0.

Example 3.28. K = Rn: In this case, KD = {0}. CP(K,F ) is equivalent
to F (x) = 0.

Remark 3.29. The above example shows that solving system of nonlinear
equations is a special instance of complementarity problems.

Example 3.30. K = Rn1 × Rn2
+ : In this case, CP (K,F ) is equivalent to

G(u, v) = 0, (20a)

0 ≤ v ⊥ H(u, v) ≥ 0, (20b)

where G : Rn1 ×Rn2
+ → Rn1 and H : Rn1 ×Rn2

+ → Rn2 . The complementarity
problem is called Mixed complementarity problem (MiCP), which represents
the KKT conditions for some optimization problem with both equality and
inequality constraints.

3.6 Solution Analysis of VI and CP

Theorem 3.31 (Existence). LetK ⊂ Rn be nonempty, convex, and compact
and let F : K → Rn be continuous. Then SOL(K,F ) ̸= ∅ and is compact.

Remark 3.32. A cone can be compact (bounded and closed in finite-dimensional
spaces). The only example is K = {0}.
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Definition 3.33 (Monotonicity). A function F : K ⊂ Rn → Rn is
(a). psuedo-monotone on K if ∀x, y ∈ K, (x − y)TF (y) ≥ 0 implies

(x− y)TF (x) ≥ 0.
(b). monotone on K if (F (x)− F (y))T(x− y) ≥ 0,∀x, y ∈ K.
(c). strictly monotone on K if (F (x)− F (y))T(x− y) > 0,∀x, y ∈ K.
(d). ϵ-montone on K for some ϵ > 1, if ∃C > 0 such that (F (x) −

F (y))T(x− y) ≥ C∥x− y∥ϵ,∀x, y ∈ K.
(e). strongly monotone on K if ∃C > 0 such that (F (x)−F (y))T(x−y) ≥

C∥x− y∥2,∀x, y ∈ K.

Definition 3.34 (Jacobian). Let F : Rn → Rn. The Jacobian of F is defined
to be

JF (x) :=

∇xf1(x1, ..., xn)
T

...
∇xfn(x1, ..., xn)

T

 =


∂f1
∂x1

· · · ∂f1
∂xn

... · · · ...
∂fn
∂x1

· · · ∂fn
∂xn

 . (21)

Remark 3.35. The Jacobian for an arbitrary function F in general is not
symmetric.

Theorem 3.36. If JF (x) ∈ Rn×n is symmetric, then CP(K,F ) must be
KKT conditions for some optimization problem.

Proposition 3.37. Let F : D ⊂ Rn → Rn be continuously differentiable on
a convex set D.

(a). F is monotone on D if and only if JF (x) is PSD, ∀x ∈ D.
(b). F is strictly monotone on D if JF (x) is PD, ∀x ∈ D.
(c). F is strongly monotone on D if and only if JF (x) is uniformly

positive definite (∃C ′ > 0 such that yTJF (x)y ≥ C ′∥y∥2,∀y ∈ Rn), ∀x ∈ D.

Theorem 3.38 (Existence and Uniqueness). Let F : K ⊂ Rn → Rn,
(a). VI(K,F ) has at most one solution if F is strictly monotone.
(b). VI(K,F ) has a unique solution if F is ϵ-monotone on K.

3.7 Dynamic Games

Example 3.39. Two players. Player 1 moves first. Player 2 observes player
1’s action and then make a deicision. The payoff functions for the two players
are

πi(q1, q2) := (a− (q1 + q2))qi − cqi, i = 1, 2, (22)
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where ci ∈ R. Suppose player 1’s action is q1 ≥ 0. Then, the best response
of player 2 to q1 is

BR2(q1) ∈ argmax
q2≥0

(a− (q1 + q2))q2 − cq2. (23)

Assume q2 > 0, q⋆2(q1) =
a−c−q1

2
. Therefore, Knowing that player 2 is always

going to play q⋆2, player 1 will choose a q1 ∈ argmaxq1≥0 π2(q1, q
⋆
2(q1)). KKT

condition to the optimization problem is

0 ≤ q1 ⊥ −(a− q1 −
1

2
(a− c− q1)−

1

2
q1 − c) ≥ 0. (24)

Assume q1 > 0, we have q⋆1 = 1
2
(a− c) and thus q⋆2 = a−c

4
, which give optimal

payoffs π⋆
1 = 1

8
(a− c)2 and 1

16
(a− c)2, for player 1 and 2 respectively.

If two players simultaneously move, their optimal decisions are given by
solving the system of optimization problems:

max
qi≥0

πi(qi, q−i), i = 1, 2. (25)

Stacking KKT conditions for the two problems yield

0 ≤
[
q1
q2

]
⊥

[
−(a− c− 2q1 − q2)
−(a− c− 2q2 − q1)

]
≥ 0. (26)

Assume q1, q2 > 0. By symmetry of the game it is not hard to see that the
optimal decisions q⋆1 = q⋆2 = a−c

3
. The optimal payoff is 1

9
(a − c)2, which is

the same for both of them.
Compared with the sequential move case, player 1 obtains a higher payoff.

Although player 2 knows more, she (he) achieves a lower payoff. This is
exactly the so-called First-move Advantange.

Note that the action profile (a−c
2
, a−c

4
) is called the Subgame Perfect

Nash Equilibrium (SPNE) of the game. It is also a Nash equilibrium
since given that both players are playing this profile, no one will have any
incentive to unilaterally deviate. Therefore, the set of subgame perfect Nash
equilibrium is a subset of the set of Nash equilibrium. The converse is not
true. (a−c

3
, a−c

3
) is a Nash equilibrium but not a subgame perfect Nash equi-

librium since player 1 can deviate to obtain a higher payoff.

Definition 3.40 (Extensive Form). The extensive form of a game contains
the following elements: (1). The set of players; (2). when does each player
move; what can each player do at their turn; what does each player knwo at
their turn; (3). payoffs are specified at the leaves.
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Definition 3.41 (Information Set). Information set is a collection of nodes
satisfying:

(1). A player has to move at each node in the information set.
(2). When the play of the game reaches a node in the information set,

the player with the same move does not know which node in the information
set the game reaches.
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